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When coils carrying high-frequency currents are placed in the neighbourhood of a 
stream of liquid metal (or other electrically conducting fluid), the magnetic pressure 
on the liquid surface causes a deflection of the stream. This effect is studied for a two- 
dimensional stream on the assumptions that the width of the stream is small 
compared with the scale characterizing the applied magnetic pressure distribution, 
and that the effect of gravity may be neglected over this scale. The relationship 
between the angle of deflection of the stream and the power supplied to the 
perturbing currents is determined. More complex deformations associated with 
distributed current sources are considered. Experiments are performed in which a 
thin sheet of mercury is deflected by two antiparallel line currents. The agreement 
between theory and experiment is reasonable, despite a tendency towards three- 
dimensionality in the latter. A second configuration is considered in which a thin 
current-carrying circular jet is deflected by a vertical line current. The path of the 
deflected jet is calculated. The limitations of the analysis are briefly discussed. 

1. Introduction 
For many purposes involving the processing of liquid metals, it may be desirable 

to be able to deflect a stream through a given angle, as indicated in figure 1 .  In  this 
paper we address the question of whether (and how) such deflection can be achieved 
by the action of the magnetic pressure p, associated with a high-frequency magnetic 
field produced by current sources outside the liquid stream. A high frequency is 
obviously desirable so thgt the magnetic field is shielded from the interior of the 
stream by the skin effect, thus maximizing the effect of magnetic pressure over the 
liquid surface. 

Although the deflecting effect may be physically clear, it is mathematically quite 
complex to describe, because the magnetic field distribution is itself affected by the 
( a  priori) unknown position of the fluid boundary. In  order to  analyse the effect, we 
shall therefore make certain simplifying assumptions, as follows : 

( 1 )  We confine ourselves to a two-dimensional configuration, in which a sheet of 
metal, of initial thickness do and uniform velocity uo, moves under the influence of 
alternating line currents. Such sheets are used in industrial processes such as the 
manufacture of metallic ribbon. 

(2) We assume that the field frequency, w / 2 x  is sufficiently high for it to  be 
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FIGUKE 1 .  Schpmatic illustration of deflection of liquid metal stream by the ma.gnetic 
pressure due to high-frequency current sources. 

reasonable to treat the effect of the fields entirely in terms of the magnetic pressure 
on the liquid surface. This requires that the magnetic skin thickness 

(where (T is the electrical conductivity of the liquid and p,, = 47t x lo-’ in SI units) be 
small compared with the undisturbed thickness of the stream : 

4s 4 a,. (1.2) 

The factor of 4 is included in (1.2) because the magnetic pressure is quadratic in the 
magnetic field and thus decays twice as quickly. 

(3) We assume that do is small compared with the scale L characterizing the 
distribution of magnetic pressure over the surface, a scale determined by the 
distribution of the current sources, their distance from the liquid surface and the 
surface curvature : 

d, $ L. (1.3) 

(4) Finally, we assume that gravity may be neglected a t  least over the scale L on 
which the deflection takes place. I n  terms of the upstream velocity u,, the lengthscale 
on which gravity acts is 

1, = u; /g .  (1.4) 

Hence, we require that L < I*. (1.5) 

The assumptions (1.2), (1.3) and (1.5) are obviously very restrictive, but they permit 
significant progress to be made as described in $92-4 below. The limitations of the 
analysis will be considered in $5.  I n  $6 we describe experimental deflection of a thin 
sheet of mercury, and compare the results with theory in $ 7 .  

An alternative mechanism for stream deflection is investigated in $8. A current is 
made to flow along a thin, circular metal jet which is then deflected by interaction 
with an opposite line current. The assumptions (1.3) and (1.5) are still necessary for 
analytical progress, but the prohibitive restriction on frequency (1.2) can be relaxed. 
Indeed, this method can be used even with direct currents. Finally, we conclude in 
§ 9. 
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FIGURE 2. The coordinate system. 

2. Quasi-one-dimensional analysis 
The assumption (1.3) above allows the use of a quasi-one-dimensional analysis, in 

which the liquid stream is in effect located by the position of its lower (or left-hand) 
boundary. This is a curve C with parametric equations 

x = x(s) ,  y = y(4, (2.1) 

where s represents arclength along C from some fixed point 0 (as in figure 2). 
Although gravity is neglected we shall describe x and y as horizontal and vertical 
coordinates respectively. The stream is also described by its thickness d ( s ) ,  which is 
clearly (weakly) non-uniform when deflection occurs. We suppose that, upstream of 
the region of magnetic influence, conditions are uniform, i.e. the stream has uniform 
velocity uo and thickness do so that the volume flux is 

As viscous effects are negligible, the flow is then irrotational everywhere by virtue of 
the assumption (1.2) which ensures that the sole effect of the magnetic field is to 
provide a magnetic pressure distribution over the liquid surface. 

Let ( s , n )  be taken as coordinates tangent and normal to  C, as in figure 2, and let 
u(s,  n) be the velocity (effectively parallel to C) within the stream. To leading order 
in the small parameter do/L, the component of the equation of motion (the steady 
Euler equation) in the n-direction is 

aP - = -puZK(s), 
an 

where p is the liquid density, p the pressure, and K ( s )  is the curvature of C a t  position 
s. The curvature K is defined to  be positive when the surface curves in the direction 
of n > 0, as in figure 2. To the same approximation, the appropriate boundary 
condition on the upper (or right-hand) boundary is 

(2.4) 
where pa is atmospheric pressure, and y is the surface tension. On the lower (left- 
hand) boundary the condition is 

P(% do) = Po - YK, 

P(%O) = P,+P,+YK> (2 .5)  
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where p M ( s )  is the magnetic pressure. In  writing (2.4) and (2.5) we have assumed that 
all the driving currents occur on the left-hand side of C. From (2.3) we see that cross- 
stream variations in the pressure are of order d a / L .  Thus Bernoulli's theorem, 

implies that the velocity in the stream is constant to leading order 

u = ua+o@). 
Integrating (2.3) using (2.7) and (2.4) we get 

and hence the required magnetic pressure p M ( s )  is given by 

where (2.10) 

The perturbation to the velocity u(s,  n)  and width d(s) are now easily determined 
from Bernoulli's theorem and mass conservation. First, from (2.6) and ( 2 . 8 ) ,  we 
have 

(2.11) 

The flow rate, &, is constant provided 

(2.12) 

and so the stream thickness, d, is given by 

d(s) = da+&Td,2h. (2.13) 

It is clear from the form of (2.10) that the inertia of the uniform stream acts 
somewhat like a negative surface tension. As the magnetic pressure is positive, the 
direction in which the stream is deflected (as characterized by the sign of K )  may be 
seen from (2.9) to depend on the sign of A. We are mainly concerned here with 
parameter values such that h is positive, i.e. when the magnetic pressure generates 
a momentum flux away from the currents. When h < 0, the magnetic pressure is 
strongly resisted by surface tension, with the momentum flux being less important. 
In both these cases the jet thickness, d ,  increases during the interaction with the 
magnetic field. It is of interest to note that when h = 0 there is no equilibrium unless 
the magnetic pressure vanishes. When both h and p M  are zero, then to lowest order 
in the jet thickness, any shape C gives rise to an admissible steady state. Somewhat 
curiously, the path of the stream is maintained by its own surface tension. An 
analogy can be drawn with Rayleigh's observation (1894) that an arbitrarily shaped 
one-dimensional string of density p per unit length, under a tension T may move 
tangentially to itself with speed c provided T = pc2.  

The results (2.9), (2.11) and (2.13) are correct to order (d,K,), where K ,  is the 
maximum value of K(s) .  The analysis may be extended to higher orders of (d,K,) if 
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FIGURE 3. Current-sheet configuration giving rise to EL desired stream deflection. 

some care is taken. Equation (2.3) still holds a t  the next order provided (2.11) is used 
for the value of u and that some account is taken of the variation in streamline 
curvature across the metal stream. If we write 

aK 
an K'(s) = do- ( s ,  0) 

then the required value of p,, correct to order (do  K,)2,  is 

p ,  = put do A[K - l&'d, + I&']. 

(2.14) 

(2.15) 

Now to lowest order, K = K2d,. We thus see that (2.9) is, in fact, correct to order 
( K ,  do)2. Second-order corrections to the sheet thickness and tangential velocity may 
be found from substitution in (2.6) and then using (2.12) as previously. At higher 
orders, however, the normal component of velocity cannot be ignored and (2.3) 
breaks down. 

The equation (2.9) defines a highly nonlinear relation between the curve C and the 
external current distribution. We may now formulate two problems : Firstly, for a 
given distribution of current lines what shape does the metal adopt ? Alternatively, 
if we have a desired path C for the metal stream, how can we arrange the currents 
so that this is achieved T A problem of the former type was solved numerically using 
the hodograph method by Shercliff (1981) in his work on the shaping of liquid metal 
columns (Etay 1980). In that problem the balance is between surface tension and 
magnetic pressure, corresponding to h negative. Here we shall consider the inverse 
problem, and ask: what distribution of external currents can produce a magnetic 
field which will provide just the magnetic pressure p M ( s )  given by (2.9) to yield the 
required deflection ? One possible solution (and there will be many others) is provided 
by placing coils so as (in effect) to provide a current sheet J ( s )  coswt near to the 
deflected stream, as indicated in figure 3. (To achieve this configuration in practice 
would require continuous adjustment of the position of the coils as the required 
deflection of the stream is produced.) This current sheet produces a magnetic field 
B(s)  coswt in the gap between the coils and the stream where 

B(4 = P 0 J f S ) -  (2.16) 
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This field is effectively parallel to C, and provides a time-averaged magnetic 
pressure 

p ,  = $ L ~  B2 = b0 J2. (2.17) 

Hence the required magnetic pressure (2.9) is achieved provided 

po J2 = 4pu; Ah' do + O(K, d , )3 .  (2.18) 

The strategy therefore appears straightforward : first describe the required curve 
6' in terms of its curvature K ( s )  ; then engineer the coils and electromagnetic controls 
so that  a current amplitude J ( s )  satisfying (2.18) is provided. The required deflection 
of the stream can then be maintained. 

If we use the expression K = d$/ds, where ~ is the angle that the tangent to C 
makes with the horizontal, then by integrating (2.18) we obtain the result 

(2.19) 

where a is the total angle of deflection of the stream. We may express a: in terms of 
the power supplied to the coils (per unit length in the z-direct,ion). This power, Wr, is 
balanced by the Joule heating in the metal stream 

or, in terms of the skin depth approximation, 

(2 .20 )  

(2.21) 

Together (2.19) and (2.21) give a simple relationship between the angle of deflection 
and the power supplied to the external coils, 

(2.22) 

Recalling the definition of 6 in ( l . l ) ,  we can see that the power needed to obtain a 
given deflection a behaves as w i ,  provided the frequency w is sufficiently large that 
the skin-depth approximation applies. Thus, in practice there will exist some optimal 
frequency at which the deflection effect is still pronounced, but for which the power 
dissipated in the metal is relatively low. This optimum value will probably occur 
when 

d - do.  (2.23) 

3. Deflecting action of a weak line current 
If the current sources are fixed ab init io, then the problem is much more 

complicated, because the magnetic-field distribution is strongly coupled with the 
stream deflection. If the sources are weak, however, then the deflection will also be 
weak, and some progress is possible by perturbation analysis. We illustrate this with 
reference to the action of a concentrated line current I cosot placed a t  a distance 
L from a stream Q = uodo (figure 4). When I = 0 the position of the stream is 
0 < x < do. When I + 0, we suppose that the stream is symmetrically perturbed as 
indicated in the figure. To leading order, however, the magnetic-field distribution 
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4. Stream deflection by a concentrated current source. Fc 
the shape of C! is given by (3.6). 

ri weak current. 

may still be calculated as if the stream were in the undisturbed position. There is then 
an image current -I coswt at  x = L, y = 0, and the net magnetic field on x = 0, is 
B = (0, I?,, 0) where 

cos wt B -POI 
71 L2+y2 

The resulting magnetic pressure is 

and the deflection of the surface, from (2.9) with K - d2x/dy2, is given by 

d2x N L3 

dy2 
- 

4x2 ( L2 + y2)2 ’ 

where the magnetic interaction parameter, N ,  is given by 

PO I 2  
pu; do LA ’ N =  

We integrate this with ‘initial’ conditions 

dx 
x(0) = - (O)  = 0 

dY 

N 
x(y) = - tan-13 

8712Y L’ with the result 

an even function of y, as expected. When IyI + L, this gives 

N 
1671 x = -IYl (3.7) 

FLM I94 
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so that the net angle of deflection is given by 

N 
8.n 

a = - .  

Equation (3.8) is strictly valid only provided the deflection is weak, i.e. a 4 1; 
however the results of $2 suggest that here also an arbitrarily large deflection of the 
stream may be achieved if the dimensionless parameter N is increased to a 
sufficiently large value. This parameter may be regarded as the magnetic interaction 
parameter, giving a measure of the transverse flux of momentum generated by the 
magnetic forces relative to the flux of momentum puid, in the incoming stream. 

The magnetic-field lines of a line current and its image consist of a family of coaxial 
circles. Thus, the analysis of this section and the result (3.8) in particular may be 
extended to the more realistic case when the line current is replaced by a wire of 
finite, circular cross-section. Let the wire consist of a circular cylinder radius r whose 
axis lies on x = - b, y = 0. At high frequency, the current in the wire flows near the 
surface and is equivalent to a line current a t  x = - L, y = 0, where 

L.2 = b2 -r2. (3.9) 

For this value of L,  the deflection obtained is given by (3.8) with (3.4). It should be 
noted that no such exact result holds for low frequencies (or d.c.). The surface of the 
wire must be a magnetic-field line for (3.9) to hold. 

4. More complex deformation 
In  the experiments that follow we shall use for electrical convenience a device 

which may be modelled by two opposite line currents a fixed distance, a ,  apart. It is 
a simple matter to extend the theory of $3 to include this case. The magnetic field 
may be represented as a sum of two terms similar to (3.1) which can then be squared 
and integrated to calculate the deflection angle a. When the two line currents lie in 
a horizontal plane a distance a apart, the result corresponding to (3.8) is 

N U2 

s x  (L+a)(2L+a)’ 
a = -  

whereas when they lie in a vertical plane we find 

N 2a2 
Sx a2+4L2. 

a=---- (4.2) 

Now when a 9 L, which is the case of interest in $$6 and 7, (4.2) describes merely a 
second-order correction. However, there is a more important adjustment that must 
be made when a 9 L and the line currents are vertical. The ‘weak-deflection’ 
approximation assumes that the deviation of the jet from the vertical is small over 
the entire region of interest. Yet if we consider the effects of each line current 
independently, it  is clear that a deflection angle 01 due to the upper line current will 
lead to a separation between the lower line current and the jet of order aa which can 
be large compared with L. If we treat the line currents as independent, then the total 
angle of deflection, a2, is given in terms of that due to a single line current, a,, by 

(4.3) 
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FIGURE 5.  Deflection of a narrow stream by two equal currents I ,  and I ,  for various positions of 
I , .  The position of I ,  may be used as a sensitive control for the ultimate direction of the stream, 
gravity being neglected. 

So far, we have supposed that the current sources are all placed to one side of the 
stream. More complex stream deformation may clearly be achieved if current sources 
on both sides are used. In the present ‘ thin-stream ’ approximation, the stream may 
be represented by a directed curve C. The magnetic field B on either side of the curve 
is a potential field with appropriate singularities a t  the current sources, and 
satisfies 

B-ii=O on C, (4.4) 

with C approached from either side. The form of C is determined by the differential 
equation (2.9), with the appropriate value of p ,  being the difference in the magnetic 
pressures on either side of C. Determination of the curve C therefore involves an 
unusual coupling of potential theory and differential geometry ; physically there 
seems little doubt that a solution invariably exists, although subsidiary conditions 
may have to be imposed to guarantee uniqueness. We shall not attempt to pursue in 
this paper the general analysis, which is likely to require a numerical approach. 

To illustrate the possible effects, suppose that we start with a stream passing 
symmetrically between two equal current sources I,, I, as indicated in figure 5(a) .  
Suppose that we now slowly move I ,  upwards (figure 5 8 ) .  The stream then first feels 
the influence of I ,  and is deflected towards I,; it  is then more strongly influenced by 
I , ,  and is deflected in a net ‘south-easterly’ direction as indicated in the figure. 

If the upward displacement of I 2  is continued (figure 5 c ) ,  then a critical point is 
reached, beyond which the stream is deflected upwards rather than downwards by 
I,. (The thin-stream analysis will be invalid in the immediate neighbourhood of this 
critical value, but will hold either side of it.) The position of I ,  may thus be used as 
a sensitive control for the ultimate direction of the stream. 

5. Limitations of the analysis 
I n  the introduction we have indicated four simplifying assumptions, all in effect 

idealizations. We now consider the qualitative effects of relaxing these assumptions. 
Suppose first that 6 is not small compared with do,  so that the field penetrates a 

significant distance into the liquid stream. This weakens the magnetic pressure over 
11.2 
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the surface, thus tending to diminish the deflecting effect. An additional complication 
is that the mean Lorentz force within the fluid will in general generate vorticity in 
the stream, which can thus no longer be treated as irrotational. The problem 
therefore becomes more complex, although a small-perturbation analysis (analogous 
to that of $3) will still be possible. If the ratio 8 / 2 4  is small but not negligible then, 
bearing in mind (1.2) and (1.3), a first correction to the analysis may be obtained by 
replacing thc magnetic pressure p ,  by 

p M ( 1  -e-2do/b). (5.11 

Secondly, if do is not small compared with L,  then the quasi-one-dimensional 
analysis of 92 is no longer justifiable, and a fully two-dimensional analysis would be 
required to find the position of both boundaries. This problem should be amenable 
to the variational and/or relaxation techniques of the kind adopted by Sneyd & 
Moffatt (1982) and Mestel (1982) for the problem of magnetic levitation. 

Thirdly, if L is not small compared with the gravitational lengthscale l , ,  then the 
tendency of gravity to resist deflection of the stream from the vertical within the 
region of magnetic deflection can no longer be neglected. Clearly, behaviour such as 
that depicted in figure 5 ( c )  becomes implausible in such circumstances. Of course, 
as the stream descends, its speed increases under the influence of gravity (with 
compensating decrease in width) so that 1, increases, and paradoxically the gravi- 
tational effect becomes weakcr relative to  the magnetic perturbing effects on a 
fixed scale L. 

If all three assumptions (1.2), (1.3) and (1.5) are simultaneously relaxed, then we 
are faced with a problem of great difficulty, whose solution would require heavy 
computational methods. Likewise, should our fourth and final assumption of two- 
dimensionality cease to apply, we would probably have to resort to numerical 
techniques. We shall see from the experiments described in the next section that the 
end effects on a nearly two-dimensional sheet are somewhat troublesome. Not only 
does the three-dimensional nature of surface tension become important, but also the 
magnetic field becomes hard to calculate near the end regions. Furthermore, the 
magnetic field is no longer topologically excluded from the far side of the metal 
stream, and some account of the magnetic pressure there should be taken. I n  spite 
of these factors, we shall see that the theory of the preceding sections does give a 
reasonable description of the stream behaviour. 

6. Experiments 
Experiments were performed in order to measure the deflection of a nearly two- 

dimensional stream by line currents. The experimental set-up used is shown in figure 
6 and is described in full by Etay & Gamier (1982). Essentially, the facility consists 
of a mercury-filled hydraulic circuit containing a freely falling column. The initial 
cross-section of the column is determined by a detachable nozzle, moulded from a 
two-component resin, whose shape may be chosen at will. The alternating magnetic 
field is supplied by cooled, insulated copper inductors connected to adjustable 
capacitors. The circuit is powered by a 100 kW generator and is tuned to resonance. 

In  these deflection experiments, the chosen nozzle is gently converging ending in 
a slit 1 mm wide and 39 mm long. The outlet must be carefully cleaned to prevent 
tearing of the mercury sheet. Photographs, with an exposure time of s were 
taken by a camera mounted in the plane perpendicular to the metal sheet. The exact 
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FIGURE 6. The experimental set-up 

FIGURE 7. The (identical) inductors used in bhe experiments. Number 1 is horizontal, 
number 2 is vertical. 

position of the camera is adjustable though there is a certain amount of parallax. The 
deflection angle was measured on the photographs. 

The inductors are made from hollow copper tubing of 3 4  mm diameter through 
which cooling water is passed. A single line current would give rise to a large self- 
inductance with resultant inconvenience for the tuning capacitor. Instead, two 
needle-shaped inductors were built for independent use as shown in figure 7 .  The 
current flows along one branch of the needle and then returns along the other. In  the 
middle of the inductor the field is approximately that due to two line currents. The 
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FIGURE 8. Sketch of the development of a nearly two-dimensional stream. 
( a )  Without current; ( b )  deflected by a high-frequency line current. 

distance between the branch axes is 15 mm, and is held constant by insulating struts. 
The current flowing in the inductor varies from 0 to 1520 A a t  a frequency of 350 
kHz. The electromagnetic skin depth, 6, is therefore 0.8 mm and a characteristic 
value of the magnetic field near the sheet varies from 0 to 2000 G. A higher current 
could not be obtained with this kind of copper-tube inductor. In fact, the cooling 
power of the pressurized water used during the experiments was not sufficient to 
prevent overheating of the inductor during prolonged use. 

A truly two-dimensional geometry cannot be achieved experimentally, even in the 
absence of electromagnetic effects. The initially flat metal sheet develops as sketched 
in figure 8. Surface tension causes rolls to form a t  both ends of the sheet which grow 
as the metal falls. Of course, in any industrial application, the sheet would be longer 
and thus end effects less important than in these experiments. A further departure 
from two-dimensionality occurs owing to the slight twisting of the sheet when it 
leaves the nozzle. 

When an alternating, high-frequency current flows in the inductor the liquid metal 
sheet is repelled from the region of high magnetic field. The resulting shape, as we saw 
in $3,  depends mainly on a balance between inertial and Lorentz forces. 
Unfortunately, the departures from two-dimensionality are amplified by electro- 
magnetic effects. The ends of the sheet are repelled further from the inductor 
than is the middle, owing to the three-dimensionality of the magnetic field there. The 
resulting curved cross-section aggravates the tendency of the sheet to contract and 
its thickness increases. The measurement of the deflection angle can thus become 
difficult. This effect is illustrated on figure 9 which shows the 'worst' kind of 
deflection that can occur. 

7. Comparison between calculated and experimental results 
The dimensionless parameter that controls the deflection is 



Deflection of a stream of liquid metal 32 1 

Ei 
E 



322 J .  Etay, A .  J .  Mestel and H .  K .  Moffatt 

where p0 is the vacuum permeability and p the density of the metal (4x x lo-' and 
1 3 . 6 ~  lo3 respectively in S1 units). The total current flowing in the inductor, I ,  is 
measured by an oscilloscope. The sheet thickness, do, and the flow velocity, uo, are 
taken to be the slit width, and the velocity through the slit as calculated from the 
measured flow rate. The greatest error in calculating the experimental value of N 
derives from the estimate of L. In  keeping with (3.9), L is defined in terms of b, the 
distance between the centre of the coil and the liquid stream. The value of b was 
measured on a photograph taken with a 45" mirror placed below the inductor. If b 
is small, which is desirable for maximum effect, then the accuracy of this 
measurement is low. Should b be too small, however, flapping of the stream caused 
by vibration of the experimental set-up may lead to undesirable contact between the 
coil and the stream. Moreover, if the coil is not held sufficiently rigid then the 
repulsion between it and the mercury will cause it to move slightly. In  practice, b was 
taken as the horizontal gap between the coil and the slit. 

The three-dimensionality of the deflected jet ensures that the measurement of the 
deflection angle, a,  is not easy. The maximum deflection, amax, occurs at the ends of 
the sheet, which are deflected in a manner not wholly described by the two- 
dimensional theory. However the minimum deflection, amin is underestimated both 
by the parallax of the photographs and by any adhesion that may occur between the 
stream and the inductor. A curious feature of the observed deflection was that the 
stream did not appear to bend until below the position of maximum pressure, 
whereas theoretically this should occur very slightly above that position. This was 
probably an observational effect due to the three-dimensionality. Taking the above 
into account, it was felt best to define a as the average of a,,, and amin. 

Two sets of experiments were performed, one with the inductor horizontal (so that  
only one branch of the inductor has a large effect on the stream) and the other with 
a vertical inductor, so that the stream is deflected by each branch in turn. According 
to (4.1) and (5.1), when a is not too large i t  is related to N through the relation 

where 

lv hor a = -  
STC ' (7.2) 

(7.3) 

when the inductor is horizontal. When i t  is vertical, we have from (4.2), (4.3) and 
(5.1) 

(7.4) 

where (7.5) 

Equation (7.4) defines a deflection angle which is a nonlinear function of N,,,. It 
varies between a value due to deflection by both branches of the inductor in turn, and 
one where only the uppermost branch is important. I n  the experiments, a typical 
value of a / L  was about 6, and N was about 10. The deflection was thus noticeably 
greater when the inductor was vertical. 

The experimental values of a (measured in degrees) are plotted in figure 10 as 
functions of N,,, and Nhor. The theoretical line (7.2) and curve (7.4) are drawn on the 
figure for comparison. The agreement is satisfactory for a small, but not surprisingly, 
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FIQURE 10. Observed deflection angle a (in degrees) against N .  ( a )  Horizontal, (b )  vertical. 

the theory overestimates the obtained deflection angle for N (and a )  large. The 
manner in which this occurs appears to be fairly systematic. There are a number of 
reasons why this might be expected. First, (7.2) and (7.4) apply only when a is small, 
whereas the experiments cover a wide range of a. The 'weak-deflection' approxi- 
mation, whereby the magnetic field may be easily calculated, thus breaks down. 
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Secondly, the constraints (1.2) and (1.3) are only weakly satisfied in the experiments. 
As a result, the unidirectional irrotational flow assumed in the theory may not be 
wholly accurate. Thirdly, it is clear that the three-dimensionality of the experiments 
will lead to a reduced deflection. It also hinders observation of a as we have already 
discussed. Finally, we should recall the difficulties inherent in the measurement of L. 
It may well be that there is a systematic underestimation of L when a is appreciably 
large. Bearing in mind the difficulties inherent in the measurement, it  was felt that 
the agreement between theory and experiment was satisfactory. 

8. Deflection of a current-carrying jet 
We now turn to a problem that, although related, is characterized by physical 

mechanisms that are somewhat different. We have seen above that there are some 
practical difficulties in controlling a stream that is not wholly two-dimensional. In 
practice one would not choose to transport metal in this manner without a definite 
reason, as a cylindrical jet would normally be more convenient. However, the 
method we have described above depends intrinsically on two-dimensionality. A thin 
cylindrical stream would only be weakly deflected as the magnetic pressure on the far 
side of the stream would almost balance that on the near side. A further restriction 
on the use of the above controlling mechanism derives from the constraint (1.2) 
which requires the skin depth to be small compared with the already thin stream 
thickness. We might wonder if a way of avoiding these limitations could be devised. 
One such means exploits the repulsive force that exists between two line currents. If 
we cause a current to flow along the jet it can be deflected by suitably placed guiding 
currents. In  this section we investigate this phenomenon. 

Instead of a thin sheet of metal we consider a thin jet, radius do, whose centreline 
is coplanar with a (vertical) line current, strength I , ,  as in figure 11. The top and 
bottom of the jet we assume to be electrically connected so that a current, - I , ,  may 
be induced along the jet. These currents may be either d.c. or ax. In  the former case, 
it will of course be necessary to apply a potential difference along the metal jet, 
whereas if the driving current is alternating, we may rely on induction to drive a 
reverse current 12. The magnitude of I ,  will then depend in general on the mutual and 
self-inductances of the circuit geometry. As the position of the jet is unknown ab 
initio, the unknown inductances will lead to complications. However, we may 
simplify the problem by linking the two circuits with a highly permeable 
ferromagnetic core. Once the system is energized, the tangential component of B will 
vanish on the core surface, ensuring that the induced current is equal and opposite 
to the driving current, 

I ,  = I , .  (8- 1) 

This configuration, wherein a loop of liquid metal acts as the secondary ‘coil’ of a 
transformer, is also used in the design of channel induction furnaces (e.g. Mestel 
1984). Equation (8.1) may also hold even when the currents are direct, as from a 
practical point of view it may well be convenient to join the line current I ,  and the 
jet in a single circuit. In  what follows, we shall not distinguish between the a x .  and 
d.c. cases and to avoid the appearance of spurious factors of 2, we shall assume that 
the r.m.s. values are used for alternating currents. 

Once again, we describe the metal by means of the parameterized curve C ,  which 
now represents the centreline of the (circular) jet. The driving current I ,  occupies the 
line x = z = 0. As compared with the problem studied in $ $ 2 4 ,  the electric currents 
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FIGURE 11. Configuration for the deflection of a current-carrying jet. 

now lie in the (z, y)-plane, with the magnetic field (locally) in the z-direction, rather 
than vice versa. 

We now consider the force balance on a small portion of the jet. We shall neglect 
surface tension and assume the cross-sectional area, ndi and hence the fluid velocity, 
u,, are constant. The normal acceleration of the fluid element is provided by the time- 
averaged electromagnetic forces integrated over the jet cross-section 

nd;pu;R(s) = J jne . f i dA  (8.2) 

or ndipuiK(s) = 12(Bl + Bz),  (8.3) 

where B, is the magnetic field due to the driving current I ,  

Po I ,  B, = - 
2xx ' 

and B, is the average over the cross-section of the jet of the field due to the circuit 
involving the jet. This average would be zero if the jet were a perfect right cylinder, 
but in general has two terms, one due to the local current curvature, and one due to 
the effects of the distant, non-parallel currents. At a general point in the (z, y)-plane 
at  some distance from the jet, x,, we may find B, from the Biot-Savart law and the 
thin-jet approximation : 

where r and B are polar coordinates centred on x,, as in figure 11. As x, approaches 
C the integrand of (8.5) is singular. This is not surprising, as we are neglecting the 
finite thickness of the jet. However, even as we perform the average over a tube of 
radius do around C ,  we obtain an expression that is logarithmically infinite as 
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do + 0. This result is related to the fact that the self-inductance of a circular current 
loop is infinite. When we allow for the finite radius of the jet we obtain the result 

(see Elliott 1966, p. 314 and Thompson 1962, p. 107). The last term in the square 
brackets in (8.6) represents a path integral over the jet from which the singularity 
has been removed. Formally, 

where $(s) is the angle between C and the x-axis is in figure 11. The term f ( S / d , )  in 
(8.6) is a function of frequency, and may be derived from the distribution of current 
over the cross-section of the jet. ‘It lies between 1 (high frequency, when skin effects 
dominate) and f (low frequency or d.c., when the current is uniform). As Kd,  is small, 
the exact value off is not very important. It should be noted that unlike the process 
outlined in $ 5 2 4 ,  the configuration described in this section does not require the skin 
effect and its associated magnetic pressures in order to function. Thus, any value of 
the frequency is admissible. 

From now on, we shall treat the jet as one-dimensional, defined by the curve C. 
Combining (8.3), (8.4) and (8.6) we obtain 

where (8.9) 

We may think of p as a modified interaction parameter. As Kd,  is small, we note that 
when I ,  - I , ,  /3 is also small, irrespective of the values of the other parameters. In  
this case, /3 is a slowly varying function of the curvature, K .  I n  practice, however, the 
logarithm may not be too large, and it may be worth considering O(1)-values of p. 
When I ,  + I,, however, p may take all values, but is a constant, Po. 

To begin with, we shall consider the latter case. Physically, this amounts to 
neglecting the field due to the secondary circuit, C. A moment’s reflection reveals 
that in this case the curve C is identical to the path a moving, suitable charged 
particle would adopt under the influence of the magnetic field B,. Equation (8.8) 
reduces to 

K x = / ~ , = - x c o s $ -  dZlc (8.10) 
dx 

and may easily be solved parametrically in terms of the angle 9 between the tangent 
to C and the x-axis, giving x($) = x e-SinP/A 

0 

(8.11) 

where (x,, yo) is the point on C where $ = 0. Equation (8.11) represents an infinite 
periodic curve which, somewhat amusingly, resembles in shape the electrical symbol 
for an inductor, as in figure 12. 
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FIGURE 12. Theoretical path of a weak current-carrying jet under the influence 
of a vertical line current, for /3, = 1.5. 

The curve defined by (8.11) crosses itself a t  least once in each period of 2n. Clearly 
such a crossing is physically inadmissible when C represents a continuous stream of 
metal. We must consider more precisely the problem to which (8.10) applies. Any 
equilibrium configuration for the jet, C, must satisfy (8.3) a t  all points where the jet 
is free, that is when no external forces act upon it. Now it is clear physically that it 
will be impossible for the entirety of the closed circuit C to be free, for then C will be 
repelled in toto away from the driving line current. For the circuit C exerts no net 
force on itself, while it can be shown that the x-component of the total force due to 
the line current 

(8.12) 

for any closed curve C. Thus, part of C must be held fixed, corresponding to the rigid 
pipes through which the metal is being pumped. As a result, we are only interested 
in a portion of the curves defined by (8.11). If the jet is ejected from a nozzle a t  the 
point x($.,), y($.,) a t  an angle $,, to the horizontal and is collected in a bath a t  
say y = yb, we would expect solutions of the form (8.11) to exist, for some para- 
meter ranges. In figure 13, we show some of the curves defined by (8.11) drawn for 
0 < $ c n, corresponding to a jet approaching horizontally and being deflected 
through 180". For values of $ outside this range the jet would be attracted by the 
line current rather than repelled, but the solution would remain valid until it  crossed 
itself. The curves are normalized so that $ = 0 a t  x = 1 ,  $ = in at y = 0, and are 
drawn for differing values of Po. The actual jet may occupy any portion of the curve 
corresponding to an appropriate value of Po. 

For large Po, the curves are almost circular. This is to be expected, as large Po 
corresponds to a high accelerating Lorentz force for a given jet velocity, and thus a 
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FIGURE 13. Possible jet paths suitably normalized. = 0.0625, 0.125, 
0.25, 0.5, I ,  2, 4, 8, 16, 32. 

small radius of curvature for C. This implies that the driving magnetic field, B,, will 
not vary greatly along C and the curvature will be approximately constant. A 
uniform magnetic field would of course drive a circular jet. As Po decreases, the curve 
C expands in both directions, but eventually contracts in the y-direction becoming 
very pointed. This is also understandable, as low Po corresponds to a weak deflecting 
action and an initially horizontal jet will remain horizontal until it is so close to the 
vertical line current that B, becomes very large. 

We are now in a position to estimate the validity of our neglect of the path-integral 
term in (8.8). Suppose that Po is small and that far from the driving current the 
arriving and departing jets are separated by a distance a. The neglect of the field due 
to the current I, in the jet compared to that due to I, is valid provided 

!?& 
a x  

(8.13) 

This clearly breaks down for x sufficiently large. Thus, we should be suspicious of 
solutions that follow the entirety of the curves in figure 13 when Po is small, even 
when Iz + I,. When I ,  - I,, the solutions we have found will break down when x is 
as large as some characteristic dimension of C. 

When all of the terms in (8.8) are of the same order, it must, in general, be solved 
iteratively, because of the path-integral term which links the local properties of C to 
those of the entire curve. The solutions will tend to be highly dependent on the 
particular portion of the circuit C which is held fixed in space and are thus difficult 
to discuss in general. A natural case to consider is one where the fixed return path 
of the current I, occurs a t  infinity. Then (8.8) applies over all of C, which will not now 
be closed. One would expect the jet to straighten out at large distances from I,, and 
indeed, this must occur. The equilibrium condition (8.8) enables us to calculate the 
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FIGURE 14. Asymptotic equilibrium of current-carrying jet. The field at P due to 
I ,  and I, must cancel. 

total angle of deflection, a, between the two asymptotes of C. For large x, the change 
in 8(s) over the curved portion of C is small. The line integral is therefore dominated 
by the contribution from the straight portions of the jet, and the configuration is 
asymptotically equivalent to  that of two line currents inclined a t  h to the vertical, 
as in figure 14. (If the angles of inclination are not the same then i t  is impossible for 
both the inclined line currents to be in equilibrium.) Thus for large x, (8.8) reduces 
to 

(8.14) 

or from figure 14 

I, 
1 2  &La %-la sina (x/sinia) ’ 1;; df? sin (8-$g++a) 

2 - = x  - = X  (8.15) 

and so (8.16) 

For the case of equal currents I, and I,, This gives a total angle of deflection a = 
131”. Unlike the case of sfj2-4, this value is independent of the physical parameters, 
coming as it does from a geometrical constraint for equilibrium at infinity, rather 
than an integrated effect along the jet. 

The above theoretical results can be extended to different geometries, and even to 
imperfectly linked a.c. circuits with an unknown mutual inductance. There are, 
however, some problems in conducting experiments with the configuration discussed 
in this section, due to the difficulty of ensuring good behaviour of the circuit of which 
the liquid metal forms part, It is well known that ‘sausage’ and ‘spiral’ instabilities 
can occur in current-carrying fluid jets (e.g. Shercliff 1965). Should such an 
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instability occur, the cross-sectional area of the jet would diminish in places until the 
jet broke up, a t  which point the circuit C would be broken. The associated sudden 
change of force would lead to chaotic and undesirable behaviour of the jet. We 
therefore conclude this section with a brief discussion on the stability of a current- 
carrying jet. 

A full stability analysis must take into account the curvature of the jet path C, the 
effects of the transverse magnetic field B,, and the non-uniform distribution of a.c. 
currents, These present formidable difficulties. However, it seems reasonable to 
expect that  the stability behaviour will be qualitatively similar to that of a 
cylindrical jet carrying a uniform current. This has been extensively analysed by 
Murty (1960) and Gupta (1964). The effect of the current is destabilizing, while the 
presence of surface tension ensures the existence of a maximal growth rate for any 
disturbance. The timescale to on which the fastest mode grows is given approximately 

(8.17) 

Now the time taken for the jet to  be deflected through an angle CL along a path of 
typical curvature K O ,  t,, is given by 

,̂ 
U t,=-. 

KO uo 
(8.18) 

If t, < to ,  then any disturbance will be advected downstream before it has time to 
grow and we expect the jet to  be stable. From (8.17), (8.18) and (8.3) 

(8.19) 

where B, is a typical value of B,+B,. Envisaging a possible experiment with 
mercury, we take the values B, = 0.1 T, uo = 1 m/s, a = 30" and p = 1.36 x lo4 

(8.20) 
kg/m3. We find 

Thus i t  seems that deflection of a metal jet in the manner discussed in this section 
will be possible, although it  is clear that the process is perilously close to instability. 
Stability considerations are therefore likely to restrict the scope of potential 
applications. 

t 
= 4.13. 

t ,  

9. Concluding remarks 
In this paper we have investigated two mechanisms by which the ultimate position 

of a stream of conducting fluid may be controlled. Although the fluid-dynamical 
techniques we have used are elementary, they do seem to give a reasonable 
description of the real behaviour, as witnessed by experiment. 

The use of electromagnetic fields as controlling devices in the metallurgical 
industry is growing. Liquid metal may be stirred, heated and shaped without resort 
to mechanical means. Usually the fluid flow that results is complex in nature, and is 
often turbulent. Here, by contrast, the flow is particularly simple and yet fairly 
realistic, which increases the practical value of the process. The analysis is fairly 
general and may be extended to cover particular geometries of industrial interest. 

Interesting analogies can be drawn between the magnetohydrodynamic problems 
we have considered and parallel ones in hydrodynamics. For example, let the half- 
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space x < 0 consist of fluid and consider the effect of a line vortex a t  x = - L, y = 0. 
The deformation of the free surface x = 0 will then be identical in form to that given 
in (3.6). Compared to the problem studied in this paper, dynamic pressure along the 
surface streamline replaces the magnetic pressure, while surface tension mirrors the 
momentum flux of the metal jet. Although the surface tension is of opposite sign to 
the momentum flux, its effect in the hydrodynamic problem is mathematically 
equivalent because there the fluid lies on the opposite side of x = 0, and the 
appropriate value of the surface curvature is negative. 

There are also similarities between the analysis of Q 8 and calculations involving 
line vortices, although the parallel here is less exact because of the differing 
conditions for equilibrium. Thus, a similar equation to (8.6) may be found in 
Batchelor (1967, p. 509). 

The authors would like to gratefully acknowledge the support of CNRS, ALCOA 
and the hospitality of Madylam during the preparation of this paper. 

Note added in proof. It has been pointed out by M. D. Cowley, to  whom the authors 
are grateful for this and other comments, that the argument leading to  expression 
(5.1) is erroneous. In  fact, the unmodified magnetic pressure, p , ,  is a t  least as 
accurate as (5.1) when S/d, is small but not negligible, However, the percentage 
difference between these two expressions is significantly smaller than the experi- 
mental uncertainty, and thus the results of this paper are not affected by this 
oversight. 
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